WARNING

Medical information is continuously renewed day by day. During reading this book, it should be kept in mind that some changes may be necessary in the treatment and drug administration protocols in the light of the evidence coming from the current literature. Always, safety standards should be applied on management of patients. It is advised for the readers to check once more the information of the drugs related to the product info, dosage and administration forms and contraindications before administering the drug to the patients. Publishers and the editors are not responsible for any medical damage to the patients or the equipments.

THIS BOOK IS ENDORSED by EUROPEAN SOCIETY of GYNAECOLOGICAL ONCOLOGY (ESGO)
The scientific contents can not be accepted as official ESGO recommendations. All scientific information and recommendations only concern the corresponding authors.

www.guneskitabevi.com
"An innovative presentation of great topics! It is the "must have" for everyone interested in Gynaecologic Oncology! It covers all fields of Gynaecological Oncology - from basic articles to controversial discussions on cutting edge subjects. Includes famous Gynaecologic Oncologists writing about their field of speciality – an absolute must read!"

Dr. Michaela Bossart, Germany

"The textbook is an easy to read and very complete guide on Gynecologic Oncology. The quality of authors is awesome and the contents concise and practical. It's a great introduction and good general view of all aspects of the subspecialty; this without a doubt should be the reference for young trainees. Congratulations on a great job."

Dr. Ignacio Zapardiel, Spain

"The 1st edition of the Textbook contains comprehensive coverage of the huge field of Gynaecological Oncology. On the one hand it provides a basic knowledge on topics of interest for trainees, on the other hand, specialists can find up to date information on surgery, radiotherapy, chemotherapy and imaging specialties. Every single topic provides insightful information and areas for discussion. It gives a wonderful overview of the pros and cons and provides a platform for discussion in the most discussion provoking areas of our subject."

Dr. Rene Laky, Austria

"This edition covers the most interesting topics of Gynecologic Oncology and will be incredibly useful for trainees and young doctors. The book includes topics of gynaecancer and pregnancy that is also very important and useful for the clinical practice of each OBGYN doctor. It is great to have a book that introduces all new technologies and management in Gynaecological Oncology."

Dr. Suzanna Babloyan, Armenia

"A thoroughly enjoyable read! It is a great first edition, extremely comprehensive covering several complex topics and areas of interest for trainees. It helped me personally to improve my understanding in a number of interesting areas and it is a good reference book. I congratulate the editors, the authors and ESGO on this massive effort!"

Dr. Ranjit Manchanda, UK

"Excellent! Covered several different topics and answered many pending questions. The combination of the enthusiasm of ENYGO's authors along with the experience of the senior authors makes the book unique. Can be read by the young residents of gynecology as well as by the senior gyn oncologists - both will find topics of their interest. Simply mesmerizing!"

Dr. Dimitrios Haidopoulos, Greece

"The first edition is a very interesting book on gynecologic oncology, extremely clear on different topics and easy to consult also for trainees. Each chapter has been written by the experts in gynecologic oncology, very useful in clinical practice. Great references. Congratulate the editors and authors for their efforts."

Dr. Michele Peiretti, Italy

"Exceptional work which is due to its rapidness of the writing and up-to-date editing as an journal article whilst maintaining the comprehensiveness of a textbook. The author list presents all the most famous current onco gynaecologists which makes the texts scientifically outstanding."

Dr. Michael Halaska, Czech Republic

"In itself the idea of creating this book is an ambitious, timely and grandiose one. Many thanks to the Editors and ESGO/ENYGO for the ability to realize this idea. Authorship of the main chapters belongs to the most competent and qualified specialists in this area. The book is very useful not only for beginners, but experienced doctors. It is very convenient to have such a Clear Guide with the final recommendations in diagnostics and treatment of the reproductive tract malignances."

Dr. Elena Ulrikh, Russia

"The textbook is easy-to-read and understand. It should be on the shelf of every gynaecologic oncologist's office. Makes a difference on an every day basis. The authors' tremendous amount of knowledge of the area is quite evident. A must for all gynecologic oncologist's..."

Dr. Karina Dahl Steffensen, Denmark

"The textbook has been written in easy and smart style. All-round contents of contemporary gynecologic oncology (including even history!) and breast cancer enables any interested doctor or tutor to find useful information easily. It makes this textbook a table-book for onco trainees, young specialists and experienced doctors. Of course, for me too!"

Looking forward to receiving the second edition!

Dr. Gauhar Dunenova, Kazakhstan

"This is a very good book which aggregates most of the techniques, knowledge and expertise in Gynaecologic Oncology in a very accurate and interesting way. Both trainees and specialist benefit from reading it."

Dr. Filipe Martins, Portugal
Preface to the Third Edition

The European Society of Gynaecological Oncology is proud to present to you the third edition of its textbook.

This textbook is one of our most ambitious and successful educational projects. It is built on the unique ESGO network of experts, who have voluntarily compiled topics in which they are the key opinion leaders.

Each edition reflected recent developments in gynaecologic oncology but gradually it has expanded into other specialities and that makes the book truly multidisciplinary.

The textbook does not represent for ESGO an isolated initiative; it is part of a logical and mutually complementary mosaic, together with many other educational projects such as web portal e-Academy, traditional bi-annual congresses, a new format of State-of-the-Art meetings in the odd years when the congress is not held, dozens of ESGO-endorsed sessions, videos of surgical procedures, teaching DVDs, etc.

On behalf of the ESGO Council, I would like to extend my gratitude for and appreciation of all the contributing authors and their co-workers. A special credit goes to two men behind the textbook, Dr. Murat Gultekin, who initiated and run the project, and Dr. Nicholas Reed, who carefully revised and refined the majority of the chapters.

I can proudly encourage you to commence your reading!

David Cibula
ESGO President
Dear All

Gynaecologic Oncology, our lovely profession, take more and more acceptance since its first establishment. It requires a multidisciplinary team to provide the diagnosis, treatment and postoperative care of the cancer patients. Therefore, a didactic training program is necessary for the management of patients with gynaecologic cancers. Unfortunately, despite the fact that most of the gynaecologic cancers seen in undeveloped or developing countries, official gynecologic oncology training programmes are approved in only a few number of well developed countries.

Our main intend to edit such a book was to be contribute to the gynaecologic oncologic training; especially in countries where such an official training is not available. Our goal was to provide a comprehensive and practical book to guide gynaecologic oncology workers. With this purpose, “Textbook of Gynaecologic Oncology” was written to provide a concise update of current clinical gynaecologic oncology. As editors, we tried to include all the subjects of gynaecologic cancers from preinvasive diseases to metastatic diseases. Surgical and medical treatments of all gynaecologic oncologic diseases are summarized by the authors.

We also tried to include the new surgical and medical developments in gynaecologic oncology. There are discussions about the most debate areas of gynaecologic oncology and review of multinational trials. Also, future aspects of gynaecologic oncology and recent advances are reviewed.

I would like to thank to ESGO council and Prof. David Cibula, President of ESGO, for their endless support for the preparation of this book.

Such a comprehensive textbook is not possible without the help of our colleagues. The authors of this book are chosen all around the world and are very famous in their topics. As you will see from the list of authors, this book almost include all the living pioneers and famous gynaecologic oncologists. Many thanks are due to all the authors who have contributed to this book and also editorial staff of Güneş Publishing. We would like to also specially thank to our co-editors. Without their tireless efforts, this book has never come to reality.

The knowledge and love increase with sharing
May wisdom and love reign in the light of intelligence

Ali Ayhan - Murat Gultekin - Polat Dursun
Preface to the Third Edition

It is a remarkable achievement that within 7 years this book has run to a third edition and the editorial team working with ESGO, ENYGO and the Turkish Society of Gynaecologic Oncology must be congratulated for producing such a remarkable volume. So many of the world’s leading experts have voluntarily contributed state-of-the-art chapters in a remarkable turnaround time. As one of the editors I have read just about every chapter and can vouch for the clinical excellence and up-to-date status. Although hard work at times and demanding when a batch of 10 chapters was sent in, it has been a pleasure to read and review these. It is a credit to all the societies involved and is fantastic asset for trainees in all disciplines of gynaecological oncology. I think it will also be a wonderful asset for established specialists who will find its state-of-the-art references an invaluable resource. If the reader feels that there are areas of overlap with some of the chapters, this is because we had tried to get as many viewpoints as possible. Medicine is not black and white and in many situations there are varying shades of grey and opinions. We also try to reflect international practice with expert contributors from the Americas, Central Europe, the Middle East, South Asia, the Far East and Australasia. Of course the world is shrinking place with modern travel and we are a far more integrated Society, but there are cultural and ethnic diversities which are reflected in medical practice. We also recognise that resources vary internationally and that not every Centre has access to robotic surgery, PET/CT scanning all the latest targeted chemotherapy agents even though they may aspire to them. However what they do have is enthusiastic and dedicated surgeons, oncologists, pathologists, radiologists and nurses.

In this modern age where so much information and learning is gained digitally through the Web, it is remarkable to have a physical resource which is so up-to-date and supportive. Once again I must congratulate Murat Gultekin and Polat Dursun for the never-ending enthusiasm support and professionalism in persuading busy gynaecological Cancer specialists all around the world to either update their chapters or write new chapters. I would also like to pay tribute to Professor Ali Ayhan without whose original stimulus, this project would never have got off the ground. It has been a great honour and pleasure to be associated with this third addition and we look forward to future additions although whether these are conventional book forms ordered DVD discs. Finally I would like to acknowledge a wonderful work of the production team, especially Irem Kucukyildiz and Mujdegul Karaca without whose enthusiasm and support this would never have been produced.

Nicholas Reed, Glasgow UK
Authors

Nadeem R. Abu-Rustum, MD
Memorial Sloan Kettering Cancer Center, New York, USA

Sunil J. Advani, MD
University of California, San Diego, USA

Ali Akdemir, MD
Ege University School of Medicine, Izmir, Turkey

Levent Akman, MD
Ege University Medical School, Izmir, Turkey

Bahriye Aktas, MD
University of Duisburg-Essen, Germany

Sercan Aksoy, MD
Hacettepe University Faculty of Medicine, Ankara, Turkey

Senem Alanyali, MD
Ege University, School of Medicine, Izmir, Turkey

Giovanni D. Aletti, MD
European Institute of Oncology, Milano, Italy

Fiori Alite, MD
Stritch School of Medicine Loyola University Chicago Cardinal Bernardin Cancer Center, USA

Maribel Almonte, PhD
International Agency for Cancer Research, Lyon, France

Sonsoles Alonso, MD
MD Anderson Cancer Center, Madrid, Spain

Aytekin Altintas, MD
Cukurova University, Faculty of Medicine, Adana, Turkey

Mustafa Kadri Altundag, MD
Hacettepe University Faculty of Medicine, Ankara, Turkey

Ozden Altundag, MD
Baskent University Faculty of Medicine, Ankara, Turkey

Giulia Amadio, MD
Gynecologic Oncology Unit, Catholic University, Rome, Italy

Frederic Amant, MD, PhD
University Hospitals Leuven, Leuven, Belgium

Antonios Anagnostopoulos MD
Liverpool Women’s Hospital, Liverpool, UK

Stefano Angioni, MD, PhD
University of Cagliari, Italy

Marc Arbyn, MD, MSc, DrTMH
Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium

Deborah K. Armstrong, MD
John Hopkins Kimmel Cancer Center, Baltimore, MD, USA

Banan Arun, MD
University of Texas, M.D. Anderson Cancer Center, Texas, USA

Macit Arvas, MD
Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey

Banan Atalar, MD
Acibadem University, School of Medicine, Istanbul, Turkey

Elisabeth Ával-Landqvist, MD, PhD
Linköping University, Linköping, Sweden

Ali Ayhan, MD
Baskent University Faculty of Medicine, Ankara, Turkey

Ayse Ayhan, MD, PhD
Seirei Mikatahara Hospital, Japan

John Hopkins University School of Medicine, Baltimore, MD, USA

Hamamatsu and Hiroshima University School of Medicine, Japan

Evandro de Azambuja, MD, PhD
Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium

Claire Bailey, MRCOG
Sandwell and West Birmingham NHS Trust, UK

Jamie N. Bakkum-Gram, MD
Mayo Clinic, Minnesota, USA

Marie Bannier, MD
Institut Paoli Calmettes, Marseille, France

Marc Barahona, MD
University Hospital of Bellvitge IDIBELL, Barcelona, Spain

Tara D. Barwick, MBChB, MSc, MRCP, FRCP
Imperial College Healthcare NHS Trust, London, UK

Honorary Clinical Senior Lecturer, Faculty of Medicine, Imperial College London, UK

Anne-Sophie Bats, MD, PhD
Georges Pompidou European Hospital, APHP, Paris, France

René Descartes, Paris V University, Paris, France

Uziel Beller, MD
Shaare Zedek Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel

Chératzade Bensaid, MD
Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Chirurgie Cancérologique Gynécologique et du Sein, Paris, France

Enrica Bentivegna, MD
Institut Gustave Roussy, Villejuif, France

Jonathan S. Berek, MD
Stanford Women’s Cancer Center, Stanford

University School of Medicine, Stanford, USA

Christine Bergeron, MD, PhD
Laboratoire Cerba, France

Kjell Bergfeldt, MD, PhD
Regional Cancer Center Stockholm/Gotland Karolinska Institutet, Dept MEB, Sweden

Johannes Berkhof, PhD
Klinikum der Stadt Wolfsburg, Germany

Adriana Bermudez, MD, PhD
Buenos Aires University Hospital, Buenos Aires, Argentina

Penny Blomfield, MD
Royal Hospital for Women University of Tasmania, Tasmania, Australia

Andreas du Bois, MD, PhD
Klinken Essen Mitte (KEM) Evang, Huysens-Stift ung/Knappschaft GmbH Henrici, Essen, Germany

Pierre-Adrien Bolze, MD
Lyon Sud University Hospital

Lorenzo Bono, MD, Bsc
University of Turin, Italy

Dustin L. Boothe, MD
Huntsman Cancer Hospital, University of Utah, USA

Mostafa A. Borahay, MD
University of Texas Medical Branch, Texas, USA

F. Xavier Bosch, MD
Institut Català d’Oncologia, IDIBELL, Cancer Epidemiology Research Programme (CERP), Spain

Tjalling Bosse, MD, PhD
Leiden University Medical Centre, The Netherlands

Peter Bőzse, MD
Editors in Chief of EJGO and Chairman of EAGC, Budapest, Hungary

Revaz Botchorishvili, MD
CHU - Hospital Estaing, France

Loic Boulanger, MD
Centre Oscar Lambret, Lille, France

Nicolas Bourdel, MD
CHU - Hospital Estaing, France
Andrea Fernandes, RN, MSc
Royal Marsden Hospital, UK

Gustavo Leme Fernandes, MD
Santa Casa de Sao Paulo Hospital, Brazil

Luc M. Fernandez, MD
University of Louisville, USA

Gabriella Ferrandina, MD
Catholic University, Rome, Italy

Annamaria Ferrero, MD, PhD
Mauriziano Hospital, University of Torino, Torino, Italy

Frank D. Ferris, MD, FAHPM, FAACE
Palliative Medicine, Research & Education OhioHealth, Columbus, Ohio, USA

Gwenael Ferron, MD, PhD
Institut Claudius Regaud, University of Toulouse, France

Anna Festi, MD
AOUI - University Hospital of Verona, Italy

Ultras Eldan, MD
Gullhane Military Hospital, Hospital, Ankara, Turkey

Daniela Fischerova, MD, PhD
First Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic

Rosalie Fisher, MBChB, FRACP
University of Auckland, Auckland, New Zealand

Paul A. Foster, MD, PhD
Institute of Metabolism & Systems Research, University of Birmingham, Birmingham, UK

Stelios Fotiou, MD, PhD
University of Athens, Aretaieion Hospital, Athens, Greece

Christina Fotopoulou, MD, PhD
Imperial College London Department of Gynaecology, London, UK

Gianluca Franceschini, PhD
Catholic University of Rome, Italy

Michael Friedlander, MD, PhD
Australia and New Zealand Gynecologic Oncology Group ANZGOG Camperdown, Sydney, Australia

Fieke EM Froeling, MD
Imperial College London, London, UK

Shingo Fujii, MD
The Tazuke Kofukai Medical Research Institute, Osaka, Japan

Keisichi Fujisawa, MD, PhD
Saitama Medical University International Medical Center, Saitama, Japan

Angiolo Gadducci, MD
University of Pisa, Italy

David K. Gaffney, MD, PhD
University of Utah, Huntsman Cancer Hospital, Utah, USA

Khadra Galalaa, FRCOG
Royal Cornwall Hospital, Truro, UK

Alberto Gallardo, MD
Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain and “La Sapienza” University Faculty of Medicine, Rome, Italy

Carmen Gan, MRCOG
Royal London Hospital, London, UK

Amparo García-Tejedor, MD
University Hospital of Bellvitge IDIELL, Barcelona, Spain

Ginger J. Gardner, MD
Memorial Sloan Kettering Cancer Center, New York, USA

Hugo Gaspar, MD
Hospital Dr Nélio Mendonça University, Madeira, Portugal

Fabio Ghezzi, MD
University of Insubria, Varese, Italy

Lilian T. Glen, MD, MSc, FRCSC
Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada

Isabelle Gingras, MD
Hôpital du Sacré-Coeur de Montréal, Montreal, Québec, Canada

José Rosalind Glasspool, MBBS, FRCP
West of Scotland Cancer Centre and University of Glasgow, Road, Glasgow

Barbara A Goff, MD
University of Washington, Cancer Care Alliance Seattle, Washington, USA

Frederic Goffin, MD, PhD
Hôpital La Citadelle, Belgium, Liège, Belgium

Gary L. Goldberg, MD
Albert Einstein College of Medicine, Montefiore Medical Center Bronx, NY, USA

François Goffrier, MD
Lyon Sud University Hospital, Lyon, France

Eva Gómez-García, MD
Oncology Center ISSEMYM, Toluca, México

Preethi Gopinath, MRCS, FRCP
The Princess Alexandra Hospital NHS Trust, Harlow, UK

Martin E. Gore, PhD, FRCP
The Royal Marsden Hospital, London, UK

Toon Van Gorp, MD
School for Oncology and Developmental Biology, AZ Maastricht, The Netherlands

Walter H. Gotlieb, MD, PhD
McGill University Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada

Charlie Gourley, MD, PhD
University of Edinburgh Cancer Research UK Centre, MRC IGMM, Edinburgh, UK

Sébastien Gouy, MD, PhD
Institut Gustave Roussy, Villejuif, France

Jacek P. Grabowski, MD, PhD
European Competence Center for Ovarian Cancer, Charité-University Medicine of Berlin, Germany

Heidi J. Gray, MD
University of Washington, Cancer Care Alliance Seattle, Washington, USA

Stefano Greggi, MD, PhD
National Cancer Institute “G. Pascale”, Naples, Italy

Anne Sophie Grémeaux, MD
CHU - Hospital Estaing, France

John A. Green, MD, FRCP
Institute of Translational Medicine University of Liverpool Clatterbridge Centre for Oncology, Bebington, UK

Alexandru Calin Grigorescu, MD, PhD, RDI
ESMO Palliative and Supportive Care Working Group, Institute of Oncology Bucharest, Romania

Perry W. Grigsby, MD
Washington University School of Medicine, USA

Liidia Gristsenko, MD
The North Estonian Medical Center, Woman’s Disease Department, Estonia

Maria Elena Guerrieri, MD
University of Pisa, Italy

Umran Kucukoz Gulec, MD
Cukurova University, Faculty of Medicine, Adana, Turkey

Murat Gultekin, MD
Turkish Ministry of Health, Cancer Control Department, Ankara, Turkey

Hacettepe University Faculty of Medicine, Ankara, Turkey

Haldun Guner, MD
Gazi University Faculty of Medicine, Ankara, Turkey

Mete Gunor, MD
Acibadem University Faculty of Medicine, Istanbul, Turkey

Tayfun Gunor, MD
Hitit University Faculty of Medicine, Corum, Turkey

Frédéric Guyon, MD
Institut Bergonie Comprehensive Cancer Center, Bordeaux, France

Ahmet Baris Guzel, MD
Cukurova University, Faculty of Medicine, Adana, Turkey

Ali Haberal, MD
Baskent University Faculty of Medicine, Ankara, Turkey
A. Scott LaJoie, MSPH, PhD
University of Louisville School of Public Health and Information Sciences, USA

Erik Lajtman, MD, PhD
Faculty Hospital Nitra, Slovakia

Rene Laky, MD
Medical University Graz, Austria

Fabio Landoni, MD
European Institute of Oncology, Milan, Italy

Maria Clelia Larussa, MD
Norfolk and Norwich University Hospital, Colney Lane, Norwich

Eric Pujade Larrauine, MD, PhD
Hotel Dieu, Paris & Hôpital Européen, France

Eric Leblanc, MD
Centre Oscar Lambret, Lille, France

Fabrice Lécuru, MD, PhD
Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Chirurgie Cancérologique Gynécologique et du Sein, Paris, France INSERM UMR-S 1124, Université Paris Descartes, Paris, France

Jonathan A. Ledermann, BSc, MD, FRCP
Cancer Research UK and UCL Cancer Trials Centre, Cancer Institute, University College London, London, UK

Abwon Lee, MD, PhD
School of Medicine, The Catholic University of Korea

Sung jong Lee, MD, PhD
St. Vincent Hospital Korea

Taek-Sang Lee, MD, PhD
SMG-SNU Boramae Medical Center, Seoul, Korea

Alba Di Leone, MD
Multidisciplinary Breast Center, Catholic University of Rome, Italy

Karín Leunen, MD
University Hospitals Leuven, Leuven, Belgium

Werner Lichtenegger, MD, PhD
Charité Universitätsmedizin Berlin Universitätsfrauenklinik, Berlin, Germany

Kristina Lindemann, MD, PhD
The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway NHMRC Clinical Trials Center, University of Sydney, Camperdown, NSW, Australia Crown Princess Mary Cancer Center; Westmead Hospital, Westmead, NSW, Australia

Megan Llewelyn, MBBS
Royal Marsden Hospital, UK

Sanjay Logani, MD
Incyte Diagnostics, WA, USA

Teresa C. Longoria, MD
University of California, Irvine Medical Center, USA

Alberto de Barros Lopes, FRCPG
Royal Cornwall Hospital, Truro, UK Retired

Domenica Lorusso, MD
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

David Luesley, MA, MD, FRCPG
Sandwell and West Birmingham NHS Trust, UK

Helle Lund, MD
Aalborg University Hospital and Department of Clinical Medicine, Aalborg University, Denmark

Chiara Macchi, MD
University of Turin, Italy

Javier F. Magrina, MD
Mayo Clinic Arizona, USA

Bhagirath Maharaj, MD
Grady Memorial Hospital Emory University, Atlanta, GA, USA

Ranjit Manchanda, MD, MRCOG, PhD
Barts Cancer Institute, Queen Mary University of London Royal London Hospital Whitechapal Road, London, UK

Aránszku Manzano, MD
Hospital Universitario Clínico San Carlos, Madrid, Spain

Maria Marchetti, MD
University of Pau, Pau, Italy

Nicola Marconi, MD
University of Insubria, Varese, Italy

Andrea Mariani, MD
Mayo Clinic, Minnesota, USA

Maurie Markman, MD
Cancer Treatment Centers of America, Philadelphia, PA Drexel University College of Medicine, Philadelphia, USA

Janina Markowska, MD, PhD
Poznan University of Medical Sciences, Poznan, Poland

Simone Marnitz, MD
University of Cologne, Germany

Christian Marth, MD, PhD
Innsbruck Medical University, Austria

Lola Martí, MD
University Hospital of Bellvitge IDIDELL Barcelona, Spain

Alejandra Martinez, MD
Chirurgie Institut Universitaire Toulouse, France

Eva – Katharina Masel, MD
Department for Internal Medicine, Medical University, Vienna, Austria

Riccardo Massetti, MD
Multidisciplinary Breast Center, Catholic University of Rome, Italy

Jérôme Massardier, MD
Lyon University Hospital, Lyon, France

Leon Massuger, MD
Radboud University Medical Centre, The Netherlands

Patrice Mathetev, MD, PhD
University of Lausanne, Lausanne, Switzerland

Amandine Maulard, MD
Institut Gustave Roussy, Villejuif, France

Marie-Hélène Mayrand, MD, PhD
Université de Montréal, Montreal, (Canada)

Renauld Mazeron, MD, PhD
Institut Gustave Roussy, France

Chris J.L.M. Meijer, MD, PhD
Klinikum der Stadt Wolfsburg, Germany

Gulden Menders, MD
Yale University School of Medicine, Yale, USA

Usa Menon, MD, FRCPG
Institute for Women's Health University College, London, UK

Rachel Michaelson-Cohen, MD
Shaare Zedek Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel

Rowan Miller, MA, PhD, MRCP
University College London Hospitals, London, UK

Lucas Minig, MD
Valencian Institute of Oncology, Valencia, Spain

Mansoor R. Mirza, MD
Copenhagen University Hospital, Denmark

Selim Misirlioglu, MD
VKF Koc University School of Medicine, Istanbul, Turkey

Marco Mitidieri, MD
University of Turin, Italy

Milos Mlynacek, MD, PhD
Faculty Hospital Nitra, Slovakia

Miziana Mokbel, MD
Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Chirurgie Cancérologique Gynécologique et du Sein, Paris, France

Bradley, J. Monk, MD, FACOG, FACS
Creighton University School of Medicine at St. Joseph Hospital, Phoenix, Arizona, USA

Mitsuru Mori, MD
Sapporo Medical University School of Medicine, Sapporo, Japan
Nicole B. Swarte, MD, PhD
University of Utrecht, Utrecht, The Netherlands

Laszlo Tabar, MD
University of Uppsala, Sweden

Amy Tang, MD
Queensland Centre for Gynaecological Cancer, Australia

Siriwan Tangjitgamol, MD
University of Bangkok Metropolis, Bangkok, Thailand

Cagatay Taskiran, MD
VKF Koc University, Istanbul, Turkey

Alexandra Taylor, MBBS, MD
Royal Marsden Hospital, UK

Eleonora Teplinsky, MD
Hofstra-Northwell School of Medicine, Northwell Cancer Institute, Lake Success, New York, USA

Mustafa Cosan Terek, MD
Ege University Medical School, Izmir, Turkey

Pim Teunissen, MD, PhD
School of Health Professions Education, Maastricht, The Netherlands

Krishnansu S. Tewari, MD, FACOG, FACS
Irvine Medical Center, California, USA

Nikolaos Thomakos, MD, PhD
University of Athens, ‘Alexandra’ Hospital, Athens, Greece

Eric D. Thomas, MD
University of Alabama at Birmingham, USA

Elisa Tripodi, MD
University of Torino, Torino, Italy

Nienke van Trommel, MD
Center for Gynecologic Oncology Amsterdam, location Academic Medical Center Amsterdam, The Netherlands

Jone Trovik, MD, PhD
Haukeland University Hospital, Bergen, Norway

Jeremie de Troyer, MD
Institut Paoli Calmettes, Marseille, France

Jill H. Tseng, MD
Memorial Sloan Kettering Cancer Center, New York, USA

Gokhan Tulunay, MD
Etilik Zubeyde Hanım Women’s Health, Teaching and Research Hospital, Ankara, Turkey

Tamer A. Turan, MD
Etilik Zubeyde Hanım Women’s Health, Teaching and Research Hospital, Ankara, Turkey

Ilknur Cetinbasan Turkmend, MD
Istanbul Medipol University, Faculty of Medicine, Istanbul Turkey

Sandra Tuyaerts, PhD
University of Leuven, Leuven, Belgium

Stefano Uccella, MD, PhD
University of Insubria, Varese, Italy

László Ungár, MD, PhD, MHCOG
Szeged University, Hungary

Alp Usubutun, MD
Hacettepe University Medical School, Ankara, Turkey

Giovanni Di Vagno, MD
Umberto I Hospital - ASL Bari, Corato (BA), Italy

Zvi Vaknin, MD
Assaf Harofe Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel

Ingrid Vandenput, MD
University Hospitals Leuven, Leuven, Belgium

Anke Vanderstraeten, MD
University Hospitals Leuven, Leuven, Belgium

Mehmet Ali Vardar, MD
Cukurova University, Faculty of Medicine, Adana, Turkey

Roberto J. Vargas, MD
Cleveland Clinic Foundation, Cleveland, Ohio, USA

Ignace Vergote, MD, PhD
Universitaire Ziekenhuizen Leuven, Leuven, Belgium

Ailin Vidal, MD
European Institute of Oncology, Milan, Italy

Cecilia Escayola Vilanova, MD
International Advanced Surgery, Barcelona, Spain

Akila N. Viswanathan, MD, MPH
Johns Hopkins Medicine, Baltimore, USA

Ivan Richter Vogelius, PhD
Copenhagen University Hospital, Denmark

George Vorgias, MD, PhD
Metaxa Memorial Cancer Hospital, Greece

Boris Vranes, MD
Clinical Center of Serbia, University of Belgrade Medical School, Serbia

Lori E. Weinberg, MD
Illinois Masonic Medical Center, Chicago, USA

Joachim Weis, MD
University Clinic Centre Freiburg, Germany

Theresa L. Werner, MD
University of Utah, Huntsman Cancer Hospital, Utah, USA

Pauline Wimberger, MD, PhD
University Dresden, TU Dresden, Germany

Benjamin Wolf, MD
Women’s and Children’s Health Leipzig University, Germany

R. Brent Wright, MD, MMM
University of Louisville, Department of Family and Geriatric Medicine, USA

Cathryn M. Yashar, MD, FACRO
Moores Cancer Center University of California, San Diego, USA

Mufit C. Yenen, MD
Gulhane Military University Hospital, Ankara, Turkey

Ferah Yildiz, MD
Hacettepe University Medical School, Ankara, Turkey

Kaner Yuce, MD
Hacettepe University Faculty of Medicine, Ankara, Turkey

Ignacio Zapardiel, MD, PhD
La Paz University Hospital, Madrid, Spain

Alain G. Zeimet, MD, PhD
Innsbruck Medical University, Austria

Michal Zikan, MD
Gynecological Oncology Center Charles University in Prague - First Faculty of Medicine and General University Hospital Prague, Czech Republic

Oliver Zivanovic, MD, PhD
Memorial Sloan Kettering Cancer Center, New York, USA

Paolo Zola, MD, PhD
University of Turin, Italy
SECTION I: BASICS OF GYNAECOLOGICAL CANCERS

1. History of Gynaecologic Oncology 3
 Krishnansu S. Tewari, MD, FACOG, FACS
 Antonio Onnis, MD, Maria Marchetti, MD, Peter Bösze, MD
 Polat Gultekin, MD, Ali Ayan, MD

 Zvi Vaknin, MD, Walter H. Gotlieb, MD, PhD

3. Genetics in Gynaecologic Oncology 38
 Rachel Michaelson-Cohen, MD, Uziel Beller, MD

4. Hereditary Women’s Cancer 42
 Dan Reisel, MBBS, PhD, Lucy Side, MD, MRCP
 Adam N. Rosenthal, PhD, FRCOG

5. The Future of Cancer Stem Cells in Gynaecologic Oncology 53
 Karim S. ElSahwi, MD, FACOG, Alessandro D. Santin, MD

 Rengaswamy Sankaranarayanan, MD, Jacques Ferlay, ME

7. Prevention of Gynaecologic Cancers 75
 Satoru Sagae, MD, Nobuyuki Susumu, MD
 Mitsuori Mori, MD

8. Prognostic Factors for Gynaecologic Cancers ... 78
 Krista S. Pfandler, MD, Okechukwu A. Ibeanu, MD, MPH

9. Screening in Gynaecological Cancers 85
 Carmen Gan, MRCOG, Usha Menon, MD, FRCOG
 Ranjith Manchanda, MD, MRCOG, PhD

10. Circulating Tumor Markers in Gynaecological Oncology 100
 Kunter Yuce, MD, Husnu Celik, MD

11. Proteomics in Gynaecological Oncology 109
 Toon Van Gorp, MD, Isabelle Cadron, MD

12. Ultrasonography in Gynaecological Oncology 113
 Daniela Fischerova, MD, PhD

13. Conventional CT and MRI in Gynaecological Malignancy 130
 Nandita M. deSouza MD, FRCR

14. PET CT in Gynaecological Oncology 140
 Perry W. Grigsby, MD

15. Functional Imaging for Measuring The Response to Treatment 143
 Ioanna Papadopoulou, FRCR
 Andrea G. Rockall, BSc, MBBS, MRCP, FRCR

16. Imaging-Guided Interventions in Gynaecological Oncology 157
 Michal Zikan, MD, PhD

17. Diagnostic Immunohistochemistry in Gyne-Oncologic Pathology:
 A Brief Appraisal of Common Applications 163
 Elisabeta Kuhn, MD, Ayse Ayan, MD, PhD

18. Pathology for Gynaecologic Oncologists 171
 Suha Deen, FRCPath

19. How to Report Pathology Specimens in Gyne-Oncologic Oncology 176
 Ayse Ayan, MD, PhD

20. Role of Frozen Section in Gynaecological Oncology 185
 Alberto Gallardo, MD, Jaime Prat, MD, FRCPath

21. Statistics for the Beginners in Gyne-Oncologic Oncology 189
 Alexia lasonos, MD

SECTION II: CERVICAL DISEASES AND HPV

22. HPV Infection Epidemiology and Prevention 195
 Alexandra de Pokomandy, MDCM, MSc
 Marie-Hélène Mayrand, MD, PhD

23. HPV and Cervical Carcinogenesis 201
 Antonios Anagnostopoulos, MD, John A. Green, MD, FRCOG

24. Human Papillomavirus Associated Cancers Other Than Cervical Cancer 207
 Lynette Denny, MD, PhD

25. The Spectrum and Clinical Sequelae of Human Papillomavirus Infection 214
 Krishnansu S. Tewari, MD, FACOG, FACS
 Bradley, J. Monk, MD, FRCOG, FACS

26. Condylomas & Evidence-Based Review of Medical and Surgical Treatments of Genital Warts 223
 Eleonora F. Preti, MD, Alyn Vidal, MD, Fabio Landoni, MD

27. HPV-Based Cervical Cancer Screening 229
 Karl-Ulrich Petry, MD, PhD, Chris J.L.M. Meijer, MD, PhD
 Dorien C. Rijkaart, PhD, Johannes Berkhof, PhD,
 Peter J.F. Snijders, PhD, Mark Arbyn, MD, MSc, DrTMH

28. New Technologies for Cervical Cancer Screening 236
 Maribel Almonte, PhD, Maria de la Luz Hernández, PhD
 Jack Cuzick, PhD

29. Bivalent HPV Vaccine Approved for Cervical Cancer Prevention in Females 247
 Luz M. Fernandez, MD, M. Eli Pendleton MD
 R. Brent Wright, MD, MAM, Diane M. Harper, MD, MPH, MS

30. Quadrivalent and Nonavalent HPV Vaccine Approved for Males and Females for HPV Associated Diseases 279
 A. Scott LaJoie, MSPH, PhD, Luz M. Fernandez, MD
 M. Eli Pendleton, MD, Diane M. Harper, MD, MPH, MS
1. Cost-Effectiveness of HPV Vaccination 309
 Mireia Díaz, PhD, Claudia Robles, PhD
 Silvia de Sanjosé, MD and F. Xavier Bosch, MD

2. Immune Therapies for Human
 Papillomavirus-Induced Diseases 321
 Sjoerd H. van der Burg, PhD

3. Cervical Pre-Invasive Disease 329
 Vesna Kesić, MD, PhD

4. Cervicovaginal Cytology: Normal and
 Abnormal Cells and Adequacy of Specimens ... 336
 Christine Bergeron, MD, PhD

5. The Basic Principles of Colposcopy 343
 Claire Balley, MRCPG, David Luesley, MA, MD, FRCPG

6. Picture Gallery for Abnormal Cytology
 and Colposcopic Findings 348
 Ermina Iljazović, MD, PhD, Azra Sadiković, MD
 Maja Konrad-Ćustović, MD

7. How to Manage Pre-Invasive
 Cervical Diseases? An Overview 357
 Mufti C. Yenen, MD, Illas Fidan MD, Firat Ortac, MD
 Murat Dede, MD, Merte Güngor MD, MD

8. Destructive Techniques for Cervical
 Preinvasive Lesions 363
 Lidia Grisstenko, MD, Kerst Kukk, MD

9. Excisional Techniques for
 Cervical Preinvasive Lesions 366
 Gokhan Tulunay, MD, Nejet Ozgul, MD

10. Management of Positive Resection
 Margin After Treatment for
 Cervical Precancer 372
 Fuat Demirkiran, MD

11. The Pathology of Cervical Cancer 376
 Michael Scott, MD, FRCPath

12. Management of Small
 Volume Cervical Cancers 381
 Akira Kurosaki, MD, PhD, Kosei Hasegawa, MD, PhD
 Keishi Fujiwara, MD, PhD

13. Radical Vaginal Trachelectomy 387
 Christhard Kühler, MD, Giovanni Favero, MD
 Achim Schneider, MD, MPH

14. Chemo-Conization for Early Staged
 Cervical Cancer 398
 Anna Festi, MD, Fabio Landoni, MD

 Christhard Kühler, MD, Giovanni Favero, MD
 Achim Schneider, MD, MPH, Simone Marnitz, MD

16. Management of Locally Advanced
 Cervical Cancer 422
 Christine Haie-Meder, MD, Cyrus Chargari, MD, PhD
 Renaud Mazeron, MD, PhD, Philippe Morice, MD, PhD

17. The Role of Lymph Node Dissection in
 Cervical Cancer 432
 Cecilia Escayola Vilanova, MD, Denis Querleu, MD

18. Management of Incompletely Operated
 Cervical Cancer 436
 Gustavo Leme Fernandes, MD
 Adriana Bittencourt Campaner, MD, MD, PhD

19. Sentinel Lymph Node in Cervical Cancer 440
 Cagatay Taskiran, MD, Selim Muratoglu, MD, Anil Onan, MD
 Haldun Güner, MD, Ali Ayhan, MD

20. Compartment Resection in
 Gynaecologic Oncology: TMMR and LEER 450
 Michael Höckel, MD, Rainer Kimmig, MD

21. Nerve-Sparing Surgery in
 Cervical Carcinoma 455
 Shingo Fuji, MD, Kentaro Sekijima, MD

22. Neoadjuvant Chemotherapy in
 Cervical Carcinoma 463
 Roberto J. Vargas, MD, Peter G. Rose, MD

23. Concomitant Chemotherapy in
 Cervical Cancer 471
 Giovanni Scambia MD, Giulia Amadio MD
 Gabriella Ferrandina MD

24. Systemic Therapy for Recurrent
 and Metastatic Cervical Cancer 1st Line
 Anti-Angiogenesis Therapy and
 Translational Rationale for Emerging 2nd
 Line Therapies 476
 Krishnasu S. Tewari, MD, FACOG, FACS
 Bradley, J. Monks, MD, FACOG, FACS

25. Radiotherapy for Cervical Cancer 487
 Mansoor R. Mirza, MD, Ivan Richter Vogelius, PhD
 Taran P. Hellebust, PhD

26. Local Management of Relapse in
 Cervical Cancer With Radiotherapy 495
 Megan Llewelyn, MBBS, Alexandra Taylor, MBBS, MD

SECTION III: DISEASES OF UTERINE CORPUS

27. Endometrial Hyperplasia Without
 Atypia and Endometrioid Intraepithelial
 Neoplasia (EIN) 509
 George L. Mutter, MD

28. Treatment of Endometrial Hyperplasia 516
 George Vorgias, MD, PhD, Stelios Fotiou, MD, PhD

29. Hysteroscopy in Endometrial Cancer 522
 Milos Milenic, MD, PhD, Erik Lajtman, MD, PhD

30. Endometrial Cancer:
 Epidemiology and Treatment 529
 Stefano Uccella, MD, PhD, Fabio Ghezzi, MD
 Ivan Casarin, MD, Francesco Multini, MD
 Jamie N. Bakkum-Gamze, MD, Andrea Mariani, MD

31. Histopathology of Endometrioid
 Endometrial Cancer 539
 Tjalling Bosse, MD, PhD

32. Uterine Sarcomas 543
 Esther Oliva, MD

33. Treatment of Advanced and Recurrent
 Endometrial Cancers 550
 Ingrid Vandenput, MD, Lieve Coenegrachts, MD
 Frederic Amant, MD, PhD

34. Compartment Resection in
 Endometrial Cancer: Peritoneal
 Mesometrial Resection (PMMR) and
 Therapeutic Lymphadenectomy 558
 Rainer Kimmig, MD, Bahriye Aktas, MD
 Martin Heubner, MD
56. Uterine Serous Carcinomas 565
 Peter E. Schwartz, MD, Gulden Menderes, MD
 Alessandro D. Santin, MD

57. Uterine Clear Cell Carcinomas 579
 Christina Fotopoulou, MD, PhD
 Werner Lichtenegger, MD, PhD

58. Conservative Treatment of Early
Endometrial Cancer ... 586
 Boris Vranes MD, Vesna Kesić MD, PhD,
 Esra Kuscu, MD

59. Management of Incompletely
Operated Endometrial Cancer 594
 Heidi J. Gray MD, Barbara A. Goff MD

60. The Management of Uterine Sarcomas 600
 Nicholas Reed, MD

61. Chemotherapy, Hormonal Therapy and
Targeted Therapies for Endometrial Cancer ... 608
 Ozden Altundag, MD, Husnu Celik, MD
 Esra Kuscu, MD

62. Other Therapies for Endometrial Cancer 618
 Lucas Minig, MD, Ignacio Romero, MD

63. Immunotherapy in Uterine Cancers 628
 An Coosemans, MD, PhD, Sandra Tuyaerts, MD
 Anke Vanderstraeten, MD, Frederic Amant, MD, PhD

64. Radiation Therapy in
Early Endometrial Cancers; Pro 638
 Remi A. Nout, MD, PhD, Carien L. Creutzberg, MD, PhD

65. Radiation Therapy in Early
Staged Endometrial Cancers: Con 644
 Jamie N. Bakkum-Gamzon, MD, Ivy A. Petersen, MD
 Stefano Uccella, MD, PhD Andrea Mariani, MD
 Karl C. Podratz, MD, PhD

66. Use of Preoperative Biomarkers to
Identify High Risk Endometrial
Carcinoma Patients .. 653
 Helga Salvesen, MD, PhD, Ingeborg B. Engelsen, MD, PhD
 Jone Trovik, MD, PhD

67. Lymphadenectomy for
Endometrial Cancer: Pro 660
 Elizabeth Jewell, MD, MHSc

68. Lymph Node Resection in
Endometrial Cancer: Con 665
 Emma J. Croasbee, MRCOG, PhD
 Henry C. Kitchener, MD, FRCS, FRCOG

SECTION IV:
OVARIAN AND TUBAL DISEASES

69. Adnexal Mass: Evaluation and Treatment 671
 Jennifer E. Cho MD, FACOG
 Farr Nezhat, MD, FACOG, FACS

70. The Non-Ovarian Origin and
Pathogenesis of Ovarian Carcinomas:
Update on the Pathological and
Molecular Clues ... 679
 Elisabetta Ruhn, MD, Ayse Ayhan, MD, PhD

71. Pathology of Malignant and
Borderline Ovarian Tumours 689
 Naveena Singh, MD, FRCPath
 Preethi Gopinath, MRCS, FRCPath

72. Borderline Tumors of The Ovary 698
 Janina Markowska, MD, PhD, Jacek P. Grabowski, MD, PhD
 Ignacio Zapardiel, MD, PhD

73. Early Stage Epithelial Ovarian Cancer 703
 Nicoletta Colombo, MD, Lucas Minig, MD

74. Surgical Management of Advanced
Stage Epithelial Ovarian Cancer 708
 Ali Ayhan, MD, Macit Arvas, MD, Eda Kocaman, MD,
 Irem Kucukyildiz, MD, Hanif Sahin, MD

75. Metastatic Ovarian Cancers 731
 Sung Jong Lee, MD, PhD, Youn Jin Choi, MD
 Ahwon Lee MD, PhD, Jong Sup Park, MD, PhD

76. Malignant Ovarian Germ Cell Tumours 737
 Michael J Seckel, BSc, MD, PhD FRCP
 Gordon J.S. Rustin, MD, Msc, FRCP

77. Ovarian Carcinomas 747
 Nicholas Reed, MD

78. Sex Cord-Stromal Tumors of The Ovary 754
 Michele Peiretti, MD, PhD, Stefano Angioni, MD, PhD
 Valentina Corda, MD, Nicoletta Colombo, MD

79. Role of Lymphadenectomy in
Ovarian Cancers ... 760
 Pierluigi Benedetti Panici, MD, Cristina Donfrancesco, MD
 Assunta Casorelli, MD, Violante Di Donato, MD, PhD

80. Management of Incompletely
Operated Ovarian Cancer 766
 Emre Ozgu, MD, Murat Oz, MD, Tayfun Gungor, MD

81. Krukenberg Tumors 771
 Soon-Beom Kang, MD, PhD, Taek-Sang Lee, MD, PhD

82. Pseudomyxoma Peritonei 774
 Ahmet Aydin Ozarar, MD, Levent Akman, MD
 Ugur Saygili, MD, Mustafa Coşan Terek, MD

83. Primary Peritoneal Carcinomas 777
 Giovanni Di Vagno, MD, Stefano Greggi, MD, PhD
 Coro Scafla, MD, PhD

84. Primary Cytoreduction: Factors Impacting
Operability and The Extent of Surgery 782
 Giovanni D. Aletti, MD, William A. Ciby, MD

85. Debulking Surgery in Advanced
Ovarian Cancer .. 791
 Jalid Sehouli, MD, PhD, Christina Fotopoulou, MD, PhD
 Jacobus Pfisterer, MD, PhD, Philipp Harter, MD
 Andreas du Bois, MD, PhD

86. Upper Abdominal Cytoreduction for
Advanced Ovarian Cancers 795
 Scott M. Eisenkop, MD, Christina L. Kushnir, MD
 Nick M. Spiritos, MD

87. Technique of Liver Resection in Cytoreductive
Surgery for Advanced Ovarian Cancer 801
 Teresa C. Longoria, MD, Robert E. Bristow, MD, MBA

88. Techniques of Diaphragmatic Surgery 809
 Benjamin Wolf, MD, Jens Einenkel, MD

89. Splenectomy and Distal Pancreatectomy 821
 Faruk M. Kose, MD, Taner A. Turan, MD, Ali Haberal, MD

90. Video-Assisted Thoracic Surgery 825
 Ram Etian, MD, Dennis S. Chi, MD

91. Metastatic Gynaecologic Cancers 828
 Joseph W. Carlson, MD, PhD, Pernilla Dahm-Kähler, MD, PhD
 Elisabeth Ávall-Lundqvist, MD, PhD
101. Neuro-Endocrine Tumours of Gynaecological Tract 834
 Nicholas Reed, MD

102. Secondary Cytoreduction in Recurrent Ovarian Cancer 840
 Philipp Harter, MD, Florian Heitz, MD
 Christina Fotopoulou, MD, PhD, Jalil Sehouli, MD, PhD

103. Tertiary Cytoreduction 845
 Jill H. Tseng, MD, Mario M. Leitao, Jr, MD

104. Fallopian Tube Neoplasm 854
 Helena Robova, MD, PhD

105. Choosing Treatments for Recurrent Ovarian Cancer: The Platinum-Free Interval 859
 Evelyn Cantillo, MD, MPH, Ashley Stuckey, MD, FACOG, FACS

106. Debunking Surgery in Advanced Ovarian Cancer – Pro Primary Surgery 867
 Jacobus Pflisterer, MD, PhD, Philipp Harter, MD
 Jalil Sehouli, MD, PhD, Andreas du Bois, MD, PhD

107. Neoadjuvant Chemotherapy or Primary Debunking Surgery in Advanced Ovarian Cancer 872
 Ignace Vergote, MD, PhD, Leen Verleye, MD
 Toon Van Gorp, MD, Karin Leunen, MD
 Patrick Neven, MD, PhD, Frederic Amant, MD, PhD

108. The Role of Interval Debunking Surgery in the Management of Advanced Stage Ovarian Cancer 875
 Philippe Morice, MD, PhD, Enrica Bentivegna, MD
 Amandine Maulard, MD, Sebastien Gouy, MD, PhD

109. Systemic Chemotherapy in Epithelial Ovarian Cancer: Pro 879
 Angiolo Gadducci, MD, Maria Elena Guerrieri, MD

110. Intrapерitoneal Chemotherapy in Epithelial Ovarian Cancer: Pros and Cons 885
 Danijela Jelovac, MD, Deborah K. Armstrong, MD

111. Secondary Cytoreduction in the Treatment of Recurrent Ovarian Cancer 890
 Ram Eitan, MD, Dennis S. Chi, MD

SECTION V: DISEASES OF VULVA

112. Pre - Invasive Diseases of Vulva 897
 Marjolein DeCuyper, MD, Frederic Kridelka, MD
 Katty Delbecque, MD, Frederic Goffin, MD, PhD

113. Pathology of Vulvar Cancers 905
 Sanjay Logani, MD, Bhagirath Majmudar, MD

114. Vulval Cancers; Epidemiology and Treatment 911
 Khadra Galaal, FRCPG, Nagindra Das, MRCOG
 Alberto de Barros Lopes, FRCPG

115. Surgical Techniques for Vulvar Cancer 917
 Neville F. Hacker, MD, Penny Blomfield, MD

116. Flap Reconstruction Following Gynaecologic Tumor Resection 924
 Sara Isani, MD, Gary L. Goldberg, MD

117. Other Diseases of Vulva (Paget’s, Melanoma and Sarcoma) 931
 Violante Di Donato, MD, PhD, Cristina Donfrancesco, MD
 Assunta Casorelli, MD, Pierluigi Benedetti Panici, MD

118. Chemotherapy for Carcinoma of the Vulva 940
 Nicholas Reed, MD

119. Radiotherapy for Vulvar Cancers 944
 David K. Gaffney, MD, PhD, Theresa L. Werner, MD
 Dustin L. Boothe, MD

SECTION VI: DISEASES OF VAGINA

120. Pre Invasive Diseases of The Vagina 955
 Jean Doyen, MD, Katty Delbecque, MD
 Frederic Goffin, MD, PhD, Frederic Kridelka, MD

121. Pathology of Vaginal Cancers 964
 Ilknur Celinslan Turkmen, MD, Alp Usnubutun, MD

122. Vaginal Cancers 970
 Neville F. Hacker, MD

123. Rare Vaginal Tumors 975
 Eric D. Thomas, MD, Brentley Smith, MD, Warner K. Huh, MD

124. Cancers of The Vagina: The Role of Chemotherapy 983
 Nicholas Reed, MD

125. Radiotherapy for Vaginal Cancer 985
 Andrew W. Orton, MD, Gita Suneja, MD, MSHP
 David K. Gaffney, MD, PhD

SECTION VII: GESTATIONAL TROPHOBLASTIC DISEASES

126. Epidemiology, Genetics, and Pathology of GTD/GTN 995
 Isa Niemmen, MD, Lone Sunde, MD, Helle Lund, MD

127. Hydatidiform Mole 1003
 Nienke van Trommel, MD, Leon Massuger, MD

128. Treatment of Gestational Trophoblastic Neoplasia 1010
 Francois Goffin, MD, Frederic Goffin, MD, PhD
 Jerome Massardier, MD, Pierre-Adrien Bolze, MD

129. Ultra High Risk Gestational Trophoblastic Neoplasia (GTN) 1016
 Fieke EM Froeling, MD, Michael J. Seckl, MD

130. Rationale for Centralization and Future Directions 1021
 Frederic Goffin, MD, PhD, Leon Massuger, MD
 Frederic Kridelka, MD, Francois Goffler, MD

SECTION VIII: SURGERY IN GYNAECOLOGIC ONCOLOGY

131. Surgical Anatomy in Pelvic Gynaecologic Oncology 1031
 Hugo Gaspar MD, Octavio Arencibia Sanchez, MD PhD
 Jordi Ponce, MD PhD

132. Perioperative Patient Care in Gynaecological Surgery 1043
 Ates Karateke, MD, Taylan Senol, MD
 Ilker Kahramanoglu, MD
SECTION XIV: BREAST CANCER

192. How Effective Are Breast Cancer Screening Programmes? 1531 Laszlo Tabar, MD, Robert A. Smith, PhD

193. Investigation of Suspected Breast Cancer 1540 Penelope Moyle, MD, MBChB, FRCR

194. Hereditary Breast Cancer Risk and Genetic Counseling 1547 Banu Arun, MD

195. Surgical Treatment of Breast Cancer 1554 Riccardo Masetti, MD, Alba Di Leone, MD
Alejandro Martin Sanchez, MD, Gianluca Franceschini, PhD

196. Medical Treatments in Breast Cancer 1563 Isabelle Gingras, MD, José Roberto Rossari, MD, MSc
Evandro de Azambuja, MD, PhD
Martine Piccart-Gebhart, MD, PhD

197. New Approaches to Radiotherapy in Breast Cancer 1577 Sezin Yuce Sari MD, Pervin Hurmuz, MD, Ferah Yildiz, MD

Paul A. Foster, MD, PhD, Mustafa Kadri Altundag, MD

199. Unanswered Questions in Gynaecologic Oncology 1596 Lucas Minig, MD, Thomas Randall, MD

200. Pregnancy Associated Breast Cancer 1600 Sileny N. Han, MD, PhD, Kristel Van Calsteren, MD, PhD
Frederic Amant, MD, PhD

SECTION XV: TRAINING IN GYNAECOLOGIC ONCOLOGY

201. Gynaecologic Training in Europe 1607 Michael J. Halaska, MD, PhD

202. Gynaecologic Oncology Fellowship Training in the USA 1615 Vasileios D. Sioulas, MD, PhD, Ane Gerda Zahn Eriksson, MD
Ginger J. Gardner, MD, Oliver Zivanovic, MD, PhD

203. Fellowship Training in Australia and New Zealand 1617 Kristina Lindemann, MD, PhD, Anthony Richards, MD

204. ESGO Training Opportunities 1621 Rene Laky, MD, Maria Celia Larussa, MD

205. Teaching and Learning Skills in the 21st Century: From Authority Based to Evidence Based Learning and Teaching Techniques 1626 Katinka Prince, MD, PhD, Cor de Koomen, MD, PhD
Pim Teunissen, MD, PhD, Jurgen M.J. Piek, MD, PhD

Index 1633
The Non-Ovarian Origin and Pathogenesis of Ovarian Carcinomas: Update on the Pathological and Molecular Clues

Elisabetta Kuhn, MD
Ayse Ayhan, MD, PhD

Introduction

Ovarian cancer remains the most lethal gynaecological malignancy, despite the significant advances over last decades in imaging technologies, surgical techniques, chemotherapeutic regimens and delivery strategies. Classically, ovarian cancer has been classified based on histological types and treated as a “single” uniform disease. On one hand, the heterogeneity of primary ovarian tumors has been well accepted, and includes substantially epithelial, sex-cord stromal, and germ cell tumors that parallel the distinctive cellular compartments of such a unique organ. On the other hand, both sex-cord stromal and germ cell tumors undoubtedly originate from the ovary itself, analogously to the testis (the male gonad), whereas the origin of epithelial tumors still remains by and large shrouded in darkness. The more we learn about the earliest histopathological features, molecular alterations and natural history of ovarian cancers, the more we have been questioning the historical terminology and classification.

The genuine purpose of any tumor classification is to make the terminology consistent and to standardize the criteria used in scientific investigations and by doctors, in order to generate most advantageous descriptors for the patients, to compare studies, and finally to better guide management, even when the therapeutic options are few. Tumors should therefore be sorted out with such a discerning formula to create a firm framework into which individual neoplasms that share specific factors, such as derivation (cell or organ of origin), histology, clinical behavior and management, fit in, forming the basis for integrity between clinicians, pathologists, and researchers. Determining the appropriate management based on the experience of well-characterized prior group of patients allows universal comparison thus transmission of evidence-based scientific know-how without ambiguity. The most commonly used staging system for malignant tumors is the TNM, elaborated and maintained by the collaboration of the AJCC (American Joint Committee on Cancer) and the UICC (Union for International Cancer Control). The TNM staging system describes the spread of tumor for each primary location based on the size and extent of the primary tumor (T), regional lymph nodes involvement (N) and presence of distant metastases (M) and is traditionally solely anatomic, but in recent years it is supplemented by designated non-anatomic prognostic factors. Notably, ovarian, fallopian tube and peritoneal tumors are described by the same staging system, since the ovarian and tubal tumors usually associate with a diffuse peritoneal dissemination.

Apart from the intratumoral heterogeneity, which occurs in any malignant neoplasm, the heterogeneity between different epithelial ovarian malignancies renders them a “group of diseases”, each of which should be clustered differently due to relevant differences in both morphology and clinical behavior, even if the origin were the same. On the basis of recent findings, the new understanding of ovarian epithelial carcinogenesis, laying the foundations on the cell of origin, the putative precursor lesions and molecular genetic alterations, compels us to reevaluate all the previous theories and to reconsider even the name. Therefore, in this chapter, we will trace the controversies in ovarian cancer field necessitating a prompt reevaluation and the misleading, even distorting facts that led the scientists unsighted for many years. Later we will touch upon the improved and updated model of epithelial carcinogenesis that divides ovarian cancer into two broad categories based on clinicopathological and molecular genetic features.

In our review we will focus on epithelial ovarian tumors (EOTs) and present the most recent experimental findings, the latest pathogenetic theories and our personal interpretations. First of all, what needs to be acknowledged is the heterogeneity and the difference of origin among the so-called “ovarian epithelial” tumors.

The Multiformity Of Epithelial Ovarian Tumors

Over forty years ago the World Health Organization (WHO) proposed the first classification of ovarian tumors, distinguishing EOTs in different histotypes,
The Non-ovarian Origin and Pathogenesis of Ovarian Carcinomas: Update on the Pathological and Molecular Clues

The main histotypes of EOC are further subclassified based on the degree of differentiation. The FIGO grading system has been recommended for both ovarian endometrioid and seromucinous carcinomas in the International Collaboration on Cancer Reporting data. For serous carcinoma, lately, it has advocated a two-degree system, replacing a three-degree system, that favours low-grade and high-grade not only for simplicity and reproducibility but also grounded on distinct molecular pathogenesis. Therefore, serous carcinoma has been dichotomized into low-grade and high-grade by the 2014 WHO classification. Though based on current terminology they appear as two morphological spectra of the same tumor, it should be stressed that they represent two different tumor types (3-5). Notably, both the histological subtypes and degree of differentiation correlate with clinical behavior of EOC.

The Ovarian Surface Epithelium Origin: The Unifying Traditional Theory

The female pelvic tumors manifest usually as a primary ovarian mass with various involvement of the peritoneum, as a consequence, it has been assumed that they primarily originate from the ovary, though EOCs show indubitable morphological resemblance to specific tissues not normally present in the ovary. In fact, the ovary is composed mainly of germ and stromal cells and virtually

Figure 1. Schematic representation of the ovarian surface epithelium hypothesis for the origin of epithelial ovarian cancers.

Abbreviations: OSE, ovarian surface epithelium; CIC, cortical inclusion cysts; SC, serous cyst; MC, mucinous cyst; EC, endometriotic cyst; EOC, epithelial ovarian cancer; HGSC, high-grade serous carcinoma; LGSC, low-grade serous carcinoma; SMC, seromucinous carcinoma; EMC, endometrioid carcinoma; CCC, clear cell carcinoma.
no real epithelial cells, so that EOCs traditionally are thought to originate from the so called ovarian surface epithelium (OSE) or its invaginations into the ovarian cortex, named cortical inclusion cysts (CICs) (6, 7). The OSE is an innocent monolayered modified mesothelium that lines the ovary, with an uncommitted morphology and differentiation. Therefore, to reconcile the unspecialized morphology of OSE with the morphological heterogeneity of EOTs, the OSE was believed to carry the potential of differentiating in different epithelial directions, as previously mentioned, recapitulating the divergent specialization similar to those shown by the Müllerian duct epithelium during normal embryonal development (Figure 1). Coherently, CICs show variable morphological characteristics and immunophenotypes (8). Ultimately, a common histogenesis from a single cell type was a convenient and readily understood concept to group the majority of epithelial neoplasms occurring within the ovary. In this conventional view of ovarian carcinogenesis the “incessant ovulation” theory proposed by Fathalla indicates the cyclic ovulation and the repeated trauma and repair processes as the cause of DNA damage and consequent neoplastic transformation of the OSE (9).

The Controversies: Through A Renewed Manifold Theory

This theory has endured for over fifty decades in spite of numerous inconsistencies. First, as mentioned above, the common morphological features of EOTs do not mimic in anyway the normal appearance of OSE. In addition, Müllerian metaplasia derived from OSE should show, at least temporarily, intermediate hybrid phenotypes with contemporary expression of Müllerian and OSE markers, but this event is extremely rare. Second, OSE being phenotypically and ultrastructurally indistinguishable from mesothelium, its neoplastic transformation should theoretically look like mesothelioma and this is not true for EOCs. Third, the testis, the male gonad, similarly to the ovary is recovered by a modified mesothelium called the tunica albuginea, but only exceptionally develops epithelial tumors. Forth, only few reports have described putative precursor lesions, such as significant epithelial atypia, dysplasia or carcinoma in situ, involving the OSE or CICs (6, 10, 11). Fifth, the few molecular studies that have investigated OSE at a molecular level failed to identify differences in the expression of genes commonly deregulated in EOC. To our knowledge, few molecular alterations characteristic of EOC are documented in OSEs-CICs, such as the overexpression of p53 and TP53 mutations but just in few reports (12-15). Moreover, a recent molecular genetic analysis showed aneuploidy in CICs but not in the OSE (13) supporting the proposal that EOC indeed begins in these CICs rather than the OSE itself.

These inconsistencies have led investigators to propose the alternative origin from the “secondary Müllerian system” (16), which they defined as such “Müllerian epithelium-bounded structures found outside fallopian tubes, uterus, and cervix” (i.e. parovarian/paratubal cysts, endometriosis, endosalpingiosis, endomucinosis and rete ovarii) to account for the Müllerian phenotype expressed by most EOC. Also this occurrence is rather unlikely since Müllerian-type carcinomas developing outside the ovary, where the secondary Müllerian system is frequently found, are extremely uncommon.

The Tubal Origin of Serous Tumors

Serous carcinoma is the most frequent EOC. Currently, it is subclassified based upon its degree of differentiation in two main subtypes, high-grade serous carcinoma (HGSC) that alone accounts for more than 70% of the EOC, and low-grade serous carcinoma (LGSC) that represents around 5% of EOC. Based on biological, molecular and clinical-pathological evidences, they are two distinct entities, and the supposed progression between LGSC to HGSC appears more semantic than real in the majority of cases. However, there are growing evidences that both HGSC and LGSC may indeed derive from fallopian tube epithelium rather than OSE (Figure 2).

Serous Tubal Intraepithelial Carcinoma: The Watershed for High-Grade Serous Carcinoma

The OSE paradigm has started being revaluated, with regard to HGSC, since 2001 when Piek and al. described dysplastic lesions and occult HGSC in the fallopian tubal epithelium, but not in the ovary, in patients who had undergone prophylactic ovario-salpingectomy for germline mutations in BRCA1 and BRCA2 genes, that genetically predispose to HGSC. Subsequent studies have confirmed the presence of the tubal lesions, later called “serous tubal intraepithelial carcinoma” (STIC). Additional studies in which fallopian tubes were carefully examined by SEE-FIM protocol (i.e. sectioning and extensively examining the fimbriated end) have revealed that STICs and early invasive tubal carcinomas occur not only in women with a HGSC genetic predisposition, but also in 50-60% of women with sporadic HGSC (without either HGSC family history or known BRCA1-2 mutations) (17-25).

Further evidence supporting STICs as the precursors of HGSC has emerged by molecular studies, firstly the identification of identical TP53 mutations in STICs and concomitant ovarian HGSCs, indicating a clonal relationship between them (24, 26, 27). Further support of the link between STICs and HGSC was the demonstration that STICs and concomitant ovarian HGSCs, besides expressing alike p53, also co-express p16, FAS, Rsf-1, and cyclin E1 (28). We have also found
shortened telomeres, as occur in other precursor lesions, in the majority of STICs (29). Finally, we recently have reported concordant copy number of CCNE1, one of the most frequently amplified genes in HGSC, in STICs and concurrent HGSC and a more prevalent centrosome amplification in HGSC as compared to STIC; these findings further support latter as the HGSC precursor (30). Importantly, these lesions are generally detected in the fimbria. Therefore, it has been subsequently proposed that the implantation of malignant cells from the STIC to the ovary develops into a tumor mass that gives the impression that the tumor originated in the ovary (Figure 2) (31). In theory some STIC cell clusters detach from tubal mucosa, due to cell discohesiveness, and adhere to the disrupted OSE after ovulation (32), or onto the OSE and induce OSE displacement from the area underneath through a mechanism similar to that described for other peritoneal surfaces (33).

In hindsight, the logical assumption that the precursors of ovarian carcinoma would be found in the ovary delayed the identification of STIC, since the tubes were not carefully examined by pathologists (6, 7, 17). However, this STIC theory does not completely explain the origin of all HGSCs, so that incongruences still need to be pointed out. In fact, even the accurate SEE-FIM protocol does not allow to identify STIC lesion in a relevant percentage of HGSCs, at least 30%. In particular, HGSCs with a solid, pseudoendometrioid,
and transitional growth pattern (SET morphology) have a reduced prevalence of concurrent STICs, that implies the possibility of missing alternative HGSC precursors (34). One possible explanation is that small STICs can be missed despite complete sampling of the tubes. Another explanation is that indeed not all ovarian HGSCs arise from STICs, but some develop from the peritoneum, so-called “primary peritoneal carcinoma” or from the ovary. Yet possibility is that a minority of HGSCs develops from peritoneal endosalpingiosis or ovarian CICs. Although, endosalpingiosis and ovarian CICs instead to derive from metaplastic transformation of the peritoneal or ovarian mesothelium, could be derived from the fallopian tube epithelium, particularly of the fimbria, that implants onto the peritoneum or on the disrupted ovarian surface following ovulation (35). In fact, both endosalpingiosis and CICs frequently show morphological features and immunophenotype identical to fallopian tubal epithelium (36-39). Parenthetically, ovulation itself with the physiological mesothelial clearance may favor the adhesion of tubal fimbriae to the ovary, particularly in view of the close anatomical location. Moreover, the released follicular fluid during the ovulation has been shown to contain reactive oxygen species (free radicals) and high levels of sex hormones, which possibly induce changes in both the epithelial cells of fimbria and the local microenvironment, and so play a role in early ovarian carcinogenesis (40). This brings back and reconciles to Fathalla’s theory and is consistent with epidemiologic evidence linking decreased ovulations (either as a result of oral contraceptives usage or multiple pregnancies) with a decreased risk of ovarian cancer (41, 42). Therefore, some HGSCs may indeed develop from peritoneal endosalpingiosis or ovarian CICs (13) but these could very well be derived, at least some, from implanted fimbrial tubal epithelium (35). Parenthetically, gene expression studies show that HGSC resembles tubal epithelium rather than OSE, therefore gene expression profile associated with ovarian HGSC is consistent with a Müllerian (i.e. tubal) embryonic origin and not with mesothelial/urogenital/ovarian origin. Coherently, differently from OSE, immunohistochemically HGSC expresses Müllerian markers, as PAX8, but not mesothelial markers such as calretinin (35).

Putative Precursors of Low-Grade Serous Carcinoma Into The Fallopian Tube

LGSC is commonly associated with serous borderline tumors, and molecular evidences suggest that LGSC derives in a stepwise progression from a serous cystadenoma or serous adenofibroma through a serous borderline tumor to a noninvasive LGSC (i.e. micropapillary variant of serous borderline tumor) that finally becomes an invasive LGSC. Lately, some investigators have proposed that serous borderline tumors derive from fallopian tube epithelium, analogously to HGSC (37, 43, 44). In fact, a careful examination of fallopian tubes in women with serous borderline tumors has disclosed tubal proliferations in the form of PAX2-null secretory cell outgrowths or of the so-called “papillary tubal hyperplasia” (44, 45). This later lesion is characterized by small papillary formations of bland appearing tubal epithelium (with both secretory and ciliated cells) budding from the tubal epithelium, located in the tubal lumen, and often containing psammoma bodies. The authors have proposed that these detached papillae of tubal epithelium implant either on the ovary where they can develop into serous borderline tumor or on the pelvic or abdominal peritoneum to produce endosalpingiosis and implants (also in absence of borderline tumors). Furthermore, similarly to HGSCs, borderline tumors can originate from ovarian CICs, indeed deriving from tubal epithelium (Figure 2, right). As a matter of fact, CICs sometimes show papillary formations and they possibly may transform in borderline tumors (46). Both FTE and CICs are composed of a dual cell component, represented by secretory and ciliated cells, that is conserved in serous cystadenoma (37, 47). Furthermore, secretory cells increases progressively in serous borderline tumors, whereas LGSCs contain almost exclusively secretory cells, so that Li et al. proposed that LGSC pathogenetic pathway is due to a progressive clonal expansion of secretory cells and impaired maturation program (37).

The Endometrial Origin of Ovarian Endometrioid, Clear Cell and Seromucinous Tumors

Endometrioid and clear cell carcinomas are the most frequent types of EOC after serous carcinoma, accounting for approximately 15-20% of EOC in Western countries. Back in 1925 Sampson hypothesized that EOC arise from malignant transformation of endometriosis. Since that time, epidemiologic morphological and molecular studies have indicated endometriosis as the precursor of ovarian endometrioid, clear cell and, more recently, seromucinous tumors. Coherently, patients with endometriosis have about 3 to 10 times increased risk of developing ovarian endometrioid and clear cell carcinoma and, approximately 40% of ovarian endometrioid and 50-90% of clear cell carcinoma are associated with endometriosis (48-50). On the other hand, shared molecular genetic alterations revealing a clonal relationship between endometriosis and endometrioid and clear cell carcinoma, are supportive for the above hypothesis and will be described later in this chapter.

Endometriosis is a quite common chronic disorder affecting females in reproductive age, characterized by the growth of endometrial-type gland and stromal tissues outside of the uterine cavity. Its origin is still
The Non-ovarian Origin and Pathogenesis of Ovarian Carcinomas: Update on the Pathological and Molecular Clues

debated - either from retrograde menstruation-stem cell, coelomic metaplasia or Müllerian remnants. Although latter hypotheses are difficult to prove with experimental methods, there are accumulated evidences supporting the former; including but not limited to the following factors. First, endometriosis occurs exclusively in humans and primates, species that menstruate (51) and its increased risk is associated with increased menstrual exposure. Second, tubal ligation reduces the incidence of ovarian endometrioid and clear cell carcinoma (52). Molecularly, eutopic endometrium exhibits intrinsic molecular abnormalities similar to endometriosis in women with endometriosis, such as activation of the oncogenic Ras and Wnt pathways (53). Presumably, these changes favor endometrial tissue to survive, implant, and invade ovarian and peritoneal tissues.

Notably, even if endometriosis involves multifocally the pelvic cavity, the ovary represents, by far, the main site of cancer onset associated with endometriosis. As a consequence mainly endometrioma, i.e. ovarian endometriosis, represents the precursor of endometriosis-associated ovarian cancer (Figure 3). Coherently, both ovarian endometrioid and clear cell carcinomas associate specifically to endometrioma rather than endometriosis elsewhere. It is conceivable that, even if the endometriosis cyst fluid and microenvironment are characterized by inflammation and iron overload, that have been demonstrated to induce DNA damage and mutagenesis, driving malignant transformation, the latter may be accelerated and potentiated by ovarian microenvironment. Therefore, endometrioma–related EOTs would derive from endometrium through a long pathogenetic process. The endometrium cells settled into the ovary first would form an endometrioma or rarely an adenofibroma. The endometrioma epithelium exposed to high concentration of ferric iron, inflammation factors and sex hormones would progressively transform to become an atypical endometriosis, then a borderline tumor and

The Endometrioma Hypothesis

Figure 3. Schematic representation of the endometrioma hypothesis for the origin of endometriosis-related epithelial ovarian cancers. Abbreviations: EMAF, endometrioid adenofibroma; CCAF, clear cell adenofibroma; Atypical, atypical endometrioma; EMBT, endometrioid borderline tumor; CCBT, clear cell borderline tumor; EMC, endometrioid carcinoma; CCC, clear cell carcinoma.
finally an invasive carcinoma, specifically an endometrioid or clear cell carcinoma (Figure 3).

Endometrioid carcinomas of the ovary, as well as their uterine counterparts, harbor CTNNB1 mutations, mutations affecting the MAP kinase pathway, including BRAF and KRAS, and the PI3K/Akt pathway, including PIK3CA and PTEN, and microsatellite instability. In mice, endometriosis-like lesions carrying concurrent kras and pten mutations transform to invasive endometrioid carcinomas, suggesting that they represent early carcinogenic events. ARID1A somatic mutations occur in a large proportion of endometrium-related neoplasms, including 30 to 60% of ovarian endometrioid carcinomas, also in endometrioma, but not in eutopic endometrium (54). Moreover, ARID1A loss in both endometrioma and associated ovarian endometrioid carcinoma in most cases, indicate that ARID1A mutation is an early molecular event in the development of ovarian endometrioid carcinomas, that occurs before malignant transformation (55). Ovarian clear cell carcinomas harbor ARID1A mutations in up to 75% of cases and PIK3CA activating mutations in 20-40% of cases (56). Interestingly, same ARID1A and PIK3CA mutations are identified consistently in concurrent endometriosis when present in clear cell carcinoma (55, 57). Moreover, similar c-MET copy number appears in atypical endometriosis and adjacent clear cell carcinoma (50, 58, 59). Therefore, these data suggest that these molecular genetic aberrations likely represent early events during neoplastic transformation. Eventually, the molecular similarities of ovarian endometrioid and clear cell carcinoma are strong supportive evidences for their close relationship and origin from endometrioma.

A short paragraph is necessary to summarize seromucinous carcinomas. In fact, there are convincing evidences that these tumors are derived from endometriosis and must be included in the group of “endometrioma-related neoplasms”. Approximately one third of seromucinous tumors are associated with endometriosis, similarly to endometrioid and clear cell carcinomas, and show an immunoprofile resembling endometrioid and clear cell tumors (except that some are WT1 positive). In addition, mutant ARID1A in conjunction with loss of ARID1A expression is detected in one third of seromucinous tumors (60).

The common association of mucinous tumors with either teratoma or Brenner tumor suggests that they may take origin from both of these tumors. Interestingly, we recently proposed that, similarly to serous tumors, Brenner tumors originate from fallopian tubal epithelium at the tubal-mesothelial junction, where it is common to find transitional metaplasia (47). Based on our observations, these metaplastic foci, derived from the tubal epithelium at the tubo-mesothelial junction, would implant onto the ovary as Walthard nests and, under hormonal stimulation, would grow as a benign Brenner tumor. Successively, the progressive accumulation of molecular genetic aberrations would transform the benign Brenner tumor first to a borderline Brenner tumor, then rarely in a malignant Brenner tumor (61). In addition, Brenner tumors or their metaplastic precursors also may give rise to mucinous tumors (62). Then again, mucinous tumors may derive from endometrioma with mucinous metaplastic epithelium, through the mechanism described previously (i.e. endometrioma hypothesis, Figure 3).

Finally, the ovarian epithelial tumors may take the form of an undifferentiated carcinoma, this tumor does not show any Müllerian differentiation and based on the common association with low-grade endometrioid carcinoma and common molecular characteristics, at least a dual derivation can be inferred, through extreme dedifferentiation of either an endometrioid carcinoma or HGSC (63).

Dualistic Pathogenetic Model of Epithelial Ovarian Tumors

The heterogeneous nature of EOC has been united in a pathogenetic dualistic model that distinguishes two groups of EOC (type I and type II), based on different clinicopathologic and molecular genetic features (64). Type I tumors include low-grade serous, low-grade endometrioid, clear cell, seromucinous and mucinous carcinoma. They present as large masses, usually confined to one ovary (stage I), and have a rather good prognosis. They typically display a variety of somatic mutations that involve ARID1A, BRAF, CTNNB1, KRAS, PIK3CA, PPP2R1A, PTEN, RNF43 and hTERT, while only rarely TP53, and are usually genetically stable (58, 64-66). They are thought to develop in a stepwise fashion from benign lesions such as adenomas and endometriosis through borderline tumors. Constitutive activation of the PI3K/Akt and MAPK signaling pathways, due to somatic mutation of genes BRAF, ERBB2, KRAS, PIK3CA, and PTEN, seems to play a preeminent role in the carcinogenic process of type I tumors. On the other hand, type II tumors include HGSC, high-grade endometrioid carcinoma, carcinosarcomas (i.e. malignant mixed Müllerian tumors) and undifferentiated carcinomas,
which typically present in advanced stage (stages II-IV) and are highly aggressive. HGSC, the prototypical type II tumor, harbors TP53 mutations in more than 95% of cases, and BRCA suppression, either by mutation or via promoter methylation, in up to 40-50%, so that are genetically highly unstable (67). They only rarely display the mutations found in the type I tumors. Based on the fallopian tube hypothesis, type II tumors are established carcinomas from the beginning arising in the fimbria and capable of implanting on the ovary and other sites in the pelvic and abdominal cavities. The difference in the nature of the precursor lesions may explain why type I tumors remain confined to the ovary for a long periods and have an indolent course whereas type II tumors spread rapidly and are highly aggressive at their onset.

The updated model, based on recent molecular studies, underscores the heterogeneity of EOC, and emphasizes that type I and type II tumors are clinically two different groups of disease. It is important to point out to the reader that type I and type II tumor model refers to different “tumorigenic pathways” and that it has limited relation with diagnostic terminology, and to be honest, it is not perfect yet. As a matter of fact, recently we found that CCNE1 copy number gain characterizes clear cell carcinomas and high-grade serous carcinomas with poor prognosis and is absent in the other type I neoplasms, joining molecularly aggressive type I and type 2 tumors (Ayhan, Kuhn et al. in press). This model is rather a meaningful etiopathogenetic representation, that groups different histological types into two broad categories combined for clinical utility, therapeutic and prognostic relevance. An appreciation of the vastly different biology of these tumors should lead to a more informed approach to diagnosis and treatment, thereby reducing the burden of this devastating disease.

Conclusion

Recent clinical-pathological, immunohistochemical and molecular genetic studies suggest that most EOCs most probably develop from non-ovarian epithelial cells that implant or home on the ovary. In particular, HGSC may derive from fallopian tubal epithelium either antecedently transformed (STIC cells) or not, LGSC directly from borderline tumors, that in turn seem to take origin from tubal precursors. Finally, endometrioid, clear cell and seromucinous carcinomas potentially arise from endometrium implanted on the ovary, climbing up through the fallopian tube, either in a mature or stem-cell form. As a consequence, recognizing the cell of origin of EOC in the fallopian tube and endometrium instead of the ovary not only redirects the attention outside the ovary as a source of precursor lesions, but also as a site of prophylactic intervention to reduce the burden of this disease. Nevertheless, it designates the fallopian tube as the secret hero or gambler on the ominous game of ovarian cancer by either playing the leading or conveyer role.

Since HGSCs are usually detected in advanced stages, because current screening methods with CA125 and transvaginal ultrasound do not allow to predate the diagnosis of HGSC, they have inauspicious course (68). This new knowledge may allow discovery of novel biomarkers for early detection of ovarian carcinoma. Moreover, the current approach to prophylaxis for ovarian cancer should be reevaluated in the light of the evolving new paradigm of ovarian carcinogenesis. The current prophylactic intervention for women with a family history of ovarian carcinoma and/or BRCA1-2 mutations is hysterectomy and bilateral salpingo-oophorectomy. The unequivocal demonstration that the HGSC rises up from the fallopian tube would indicate salpingectomy alone as the best prophylactic intervention to prevent the risk of ovarian cancer while avoiding the adverse effect of ovary ablation (iatrogenic menopause), a practice which has started to become common in Canada (i.e. opportunistic bilateral salpingectomy) (69).

Finally, in the light of this novel view, scientists and clinicians should focus on defining the biological mechanisms that lead the Müllerian epithelia to sit into the ovary and give rise to EOC, including the tubal and ovarian microenvironment factors, that favor full-fledged cancer development. This effort will allow developing reliable biomarkers for early detection of ovarian carcinoma, and identifying the best prophylactic strategies, thereby reducing the burden of this devastating disease.

References

